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A two-dimensional model for slow convection at
infinite Marangoni number
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(Received 14 May 1996 and in revised form 6 July 1996)

The free surface of a viscous fluid is a source of convective flow (Marangoni convec-
tion) if its surface tension is distributed non-uniformly. Such non-uniformity arises
from the dependence of the surface tension on a scalar quantity, either surfactant
concentration or temperature. The surface-tension-induced velocity redistributes the
scalar forming a closed-loop interaction. It is shown that under the assumptions
of (i) small Reynolds number and (ii) vanishing diffusivity this nonlinear process
is described by a single self-consistent two-dimensional evolution equation for the
scalar field at the free surface that can be derived from the three-dimensional basic
equations without approximation. The formulation of this equation for a particular
system requires only the knowledge of the closure law, which expresses the surface
velocity as a linear functional of the active scalar at the free surface. We explicitly
derive these closure laws for various systems with a planar non-deflecting surface
and infinite horizontal extent, including an infinitely deep fluid, a fluid with finite
depth, a rotating fluid, and an electrically conducting fluid under the influence of a
magnetic field. For the canonical problem of an infinitely deep layer we demonstrate
that the dynamics of singular (point-like) surfactant or temperature distributions
can be further reduced to a system of ordinary differential equations, equivalent to
point-vortex dynamics in two-dimensional perfect fluids. We further show, using
numerical simulations, that the dynamical evolution of initially smooth scalar fields
leads in general to a finite-time singularity. The present theory provides a rational
framework for a simplified modelling of strongly nonlinear Marangoni convection in
high-Prandtl-number fluids or systems with high Schmidt number.

1. Introduction
The description of flows driven or modified by surface tension gradients requires, in

general, the solution of the full three-dimensional nonlinear equations of free-surface
hydrodynamics (Levich 1962; Edwards, Brenner & Wasan 1991). Such a solution is
often quite expensive computationally. Consequently it is tempting to ask whether the
excursion into the third dimension can be simplified or avoided. This becomes even
more attractive if one is interested in a self-consistent theory containing only free-
surface quantities, as is the case in various problems of chemical engineering involving
surfactants. Such an approach, based on boundary-integral techniques (Pozrikidis
1992), has recently proved useful for a similar problem, namely the description of
monolayer domains at the air–water interface (Lubensky & Goldstein 1996).

The aim of the present paper is to demonstrate that under suitable assumptions the
three-dimensional dynamics of surface-tension-driven flows can be mapped onto a
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Figure 1. Schematic of the closed-loop interaction in Marangoni convection: A flow is created in a
viscous fluid owing to non-uniform distrubtion of surface tension. The surface-tension-driven flow
redistributes the surface tension.

self-consistent two-dimensional evolution equation for free-surface quantities. Before
engaging in a systematic treatment of this problem, we wish to provide the reader
with an intuitive understanding of the physical mechanisms involved.

The basic ingredients of surface-tension-driven convection, often called Marangoni
convection (MC), are sketched in figure 1. An indispensible prerequisite for MC is the
dependence of the surface tension σ on a scalar field θ which can be the temperature,
concentration or a combination of both, henceforth referred to as the surfactant. We
consider a situation in which the equation of state σ(θ) is well approximated by the
linear relationship

σ = σ0 − γ(θ − θ0) (1.1)

where σ0 is the surface tension at a reference surfactant concentration θ0 and γ the
usually positive coefficient of surface tension variation. Although there are instances
in which this relation is inappropriate (see e.g. Oron & Rosenau 1994), the majority
of phenomena in MC can be understood in the framework of this simple relation.

As illustrated in figure 1, a non-uniform distribution of surface tension, resulting
from non-uniformities of the surfactant concentration, induces a flow in the underlying
fluid (Landau & Lifshitz 1987). This flow leads to a reordering of the surfactant
distribution and thus to a reordering of the driving surface-forces, the latter process
being governed by an advection–diffusion equation. The nonlinear character of this
closed-loop interaction is best appreciated by considering the advection–diffusion
equation

∂tθ + ∇ · (vθ) = D∇2θ (1.2)

describing the evolution of an insoluble surfactant, i.e. a surfactant residing entirely
at the planar free surface of a fluid (Edwards et al. 1991). Here ∇ = ex∂x + ey∂y
and ∇2 = ∂2

x + ∂2
y denote the two-dimensional gradient and Laplacian, respectively,

and D is the surface diffusion coefficient. Since the flow is driven entirely at the
free surface, the surface velocity v is a functional of the surfactant concentration,
and (1.2) represents, at least in the formal sense, a self-consistent nonlinear evolution
equation for the surfactant concentration. Unfortunately, it is a formidable task to
extract useful information about the non-local functional v[θ] from the full nonlinear
Navier–Stokes equation. It is therefore the goal of the present paper to isolate such
cases in which the Navier–Stokes equation can be approximated by the linear Stokes
equation and the functional v[θ] can be computed explicitly.

The concept of self-consistent two-dimensional Marangoni convection, exemplified
by (1.2), is attractive for two reasons. On the one hand, it permits to the greatest
possible extent the separation of the interfacial aspects of MC from those determined
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by the hydrodynamics of the bulk flow. It thereby provides a useful vehicle for
elucidating complex situations like surface-tension-driven Bénard convection (Davis
1987; Koschmieder 1993), thermocapillary migration of drops and bubbles (Oliver &
De Witt 1994), free-surface turbulence in the presence of surfactants (Ting & Yue
1995; Sarpkaya 1996) as well as spreading of surfactants (Jensen 1995; Jensen &
Grotberg 1992, 1993) in which such separation is not rigorously possible. On the
other hand, the model (1.2) (possibly with a vector-valued function θ = (θ1, θ2, . . . , θn)
describing n concentration fields) represents a new class of mathematical models
for pattern formation and frontogenesis in nonlinear systems where different closure
laws v[θ] can be ‘plugged in’ depending on the specific physical situation. From the
conceptual point of view, the family of advection–diffusion equations (1.2) is a natural
counterpart to the family of reaction–diffusion equations

∂tθ = D∇2θ + f(θ) (1.3)

(again with the vector θ = (θ1, θ2, . . . , θn) representing the concentration of n species)
widely considered as a prototype for pattern formation in nonlinear extended systems.
The relation v[θ], specifying the particular system, plays an analogous role in closing
(1.2) as does the relation f(θ) for (1.3) specifying the reaction kinetics (Turing 1952).

The present paper is organized as follows. In §2 we formulate the basic ideas
of the present theory and apply them in §3 to the simplest non-trivial problem, an
infinitely deep layer. We demonstrate for this case that the dynamics of the system
can be further reduced to a set of coupled nonlinear ordinary differential equations if
one considers the evolution of singular surfactant distributions in the form of delta-
functions, similar to point-vortex systems in two-dimensional ideal hydrodynamics.
Moreover, we demonstrate numerically that the dynamical evolution of smooth initial
data leads to a finite-time singularity. In §§4, 5 and 6 we generalize the canonical
problem to a fluid with finite depth, a rotating fluid, and an electrically conducting
fluid under the influence of a magnetic field, respectively. In §7 we summarize our
results and discuss possible extensions of our work.

2. Basic concepts
Consider a viscous fluid bounded by a planar non-deflecting free surface z = 0

with infinite horizontal extent. The fluid is characterized by its kinematic viscosity
ν, density ρ, dynamic viscosity µ = ρν, and by the coefficient γ of surface tension
variation defined in (1.1). In what follows all quantities at the free surface will be
denoted by lower-case letters, while upper-case letters will be used to denote the
values of physical quantities in the volume. Moreover, ∇̃ and ∇ will denote the
three-dimensional and two-dimensional Nabla operators, respectively.

Let a scalar field Θ be immersed in the fluid, which modifies the surface tension
according to (1.1), and let us denote by θ the value of the scalar at the free surface.
The field Θ referred to as the surfactant, encapsulates three important particular
cases, namely the case of the concentration of a completely soluble surfactant Θ =
C(x, y, z, t) with constant mass

∫
Cd3x, the case of an insoluble surfactant θ = cs(x, y, t)

residing at the free surface and having again constant mass
∫
csd

2x, and finally the
case of a temperature field Θ = T (x, y, z, t) which, in the absence of heat sources
obeys

∫
Td3x = const.

The dynamics of the completely soluble surfactant Θ in a velocity field V is
governed by the three-dimensional advection–diffusion equation

∂tΘ + ∇̃ · (VΘ) = D∇̃2Θ, (2.1)
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where D denotes the diffusivity. In the thermal case, D has to be replaced by the
thermal diffusivity κ. The evolution of an insoluble surfactant θ, confined to the free
surface, is described by the two-dimensional equation

∂tθ + ∇ · (vθ) = Ds∇2θ, (2.2)

where Ds is called the surface diffusivity.
It should be noted that (2.1) and (2.2) represent only two particular cases of the

general surfactant dynamics which is characterized by the presence of both a three-
dimensional bulk concentration C(X , t) and an excess surface concentration cs(x, t).
While the dynamics of the former is described by the equation ∂tC+∇̃·(VC) = D∇̃2C ,
identical to (2.1), the behaviour of the latter is governed by the generalized version
∂tcs+∇· (vcs) = Ds∇2cs+J(cs, c) of (2.2). The source term J , for which various models
exist in literature, describes the exchange of surfactant concentration between the
surface and the bulk and depends on the value c of the bulk concentration at the free
surface. The particular case of an insoluble surfactant comes from C ≡ 0 and J ≡ 0,
while the opposite case of a complete solubility corresponds to cs = 0. We will show
in §7 that the theory formulated below can be extended to any non-trivial transport
relation J with the provisio that D has to be zero.

As illustrated in figure 1, the velocity field is determined by the free-surface
surfactant concentration through the three-dimensional incompressible Navier–Stokes
equation

∂tV + (V · ∇̃)V = −∇̃P + ν∇̃2V + F , (2.3)

∇̃ · V = 0, (2.4)

subject to the boundary conditions

µ∂zVx = −γ∂xθ, µ∂zVy = −γ∂yθ, Vz = 0 at z = 0 (2.5)

and to appropriate conditions at the lower boundary. The force term in the Navier–
Stokes equation, to be specified later, will either represent the Coriolis force in the
rotating fluid of §5 or the Lorentz force in the electrically conducting fluid of §6, arising
from the interaction of the fluid with an applied homogeneous magnetic field. The
term F does not contain any external forcing and is thereby purely dissipative. In fact,
the motion of the fluid is exclusively produced by the first two Marangoni boundary
conditions (2.5) which express the continuity of the tangential stress across the free
surface (cf. Landau & Lifshitz 1987; Davis 1987). These boundary conditions provide
the feedback between the scalar and the flow field. It is important to emphasize once
more that the entire three-dimensional flow V is determined by the two-dimensional
surfactant concentration θ at the free surface. In order to formulate the conditions
under which the basic equations (2.1)–(2.5) can be simplified, we have to consider the
values of the relevant non-dimensional numbers, which are in our case the Reynolds
number and the Péclet number.

Let ∆θ denote a variation of surfactant concentration over the lengthscale `, and
∆σ = γ∆θ the associated surface tension variation. Then the boundary condition (2.5)
provides the estimate

v ∼ ∆σ

µ
(2.6)

for the magnitude of the induced velocity. The Reynolds number Re = v`/ν and the
Péclet, or Marangoni, number Pe = v`/D (or Pe = v`/κ in the thermal case) can
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then be estimated as

Re =
∆σ`

µν
, (2.7)

Pe =
∆σ`

µD
. (2.8)

While the Reynolds number is a dimensionless measure of the importance of con-
vective transport of momentum in relation to diffusive transport, the Péclet number
measures the ratio between convective and diffusive transport of the surfactant.

Let us estimate the order of magnitude of these parameters for a typical example
where a surfactant, namely sodium dodecyl sulfate at 10 % of its critical micelle
concentration, acts on a silicone oil–water interface (Park, Maruvada & Yoon 1994).
With ∆σ ∼ 7× 10−3 kg s−2 and µ ∼ 10−1 kg ms−1 we can estimate the characteristic
velocity as v ∼ 7×10−2 m s−1. Considering small-scale fluctuations over the lengthscale
` ∼ 10−3 m and using D ∼ 10−8 m2 s−1 for the surface diffusion coefficient of the
surfactant (De Wit, Gallez & Christov 1994) we obtain the estimates

Re ∼ 7× 10−2, (2.9)

Pe ∼ 7× 103. (2.10)

Re � 1 shows the dominance of the diffusive momentum transport over advection,
whereas Pe � 1 suggests the overwhelming importance of convective surfactant
transport in comparison with diffusion. Conditions similar to (2.9) and (2.10) are
encountered in a wide class of surface-tension-driven flows, including Bénard con-
vection at high Marangoni number (Nitschke & Thess 1995), adsorption controlled
Marangoni flow past emulsion droplets (Edwards et al. 1991, chap. 5.6), evaporative
convection (Berg, Acrivos & Boudart 1966) and thermocapillary migration of drops
and bubbles (Oliver & De Witt 1994). Even in cases where the integral Reynolds
number is not small, for instance high-Marangoni-number convection near lateral
walls (Cowley & Davis 1983; Zebib, Homsy & Meiburg 1985) or interaction between
vortices and a surfactant-contaminated free surface (Tsai & Yue 1995; Tryggvason et
al. 1992), the condition Re� 1 is fulfilled for surfactant fluctuations on scales smaller
than the thickness of the viscous boundary layer. The smallness of the Reynolds
number demonstrates the fact that the (linear) Stokes equation

− ∇̃P + ν∇̃2V + F = 0 (2.11)

can be used to approximate the flow instead of the (nonlinear) Navier–Stokes equation
(2.3).

Progress in hydrodynamics is often aided by considering fluids with vanishing
molecular transport coefficients. With the condition Pe � 1 in mind, we shall
therefore assume that the diffusivity of the surfactant is zero (D = 0 in (2.1) or
(2.2)). This assumption ensures that the evolution of θ is only a redistribution of
the initial two-dimensional distribution by the two-dimensional surface velocity v
with no ‘exchange of information’ between the surface concentration and the bulk
concentration. Indeed, a particle initially located at the free surface cannot leave the
free surface on account of the third boundary condition in (2.5), and cannot exchange
concentration with adjacent particles owing to the absence of diffusion. As a result,
equations (2.1) and (2.2) at the free surface can be written as

∂tθ + (v · ∇)θ = 0, (2.12)
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for the soluble surfactant, and

∂tθ + ∇ · (vθ) = 0, (2.13)

for the insoluble surfactant. The first equation is derived by evaluating (2.1) at the free
surface and making use of the third boundary condition (2.5). Notice that (2.12) and
(2.13) are different since the divergence of the surface velocity ∇ · v = ∂xvx + ∂yvy =
−∂zvz is non-zero. For a soluble surfactant, θ is conserved along the trajectory of each
particle but the integral quantity

∫
θd2x is generally not constant. For an insoluble

surfactant, θ can change along a Lagrangian trajectory but
∫
θd2x is conserved. Both

equations (2.12) and (2.13) contain only free surface quantities. Strictly speaking, the
zero-diffusivity assumption is only necessary for the soluble surfactant; the insoluble
surfactant equation is of self-consistent form even in the presence of diffusion. For
the sake of uniformity, however, we adopt the condition D = 0 for both models.

Equations (2.12) and (2.13) do not represent a self-consistent closed system until we
are able to specify the ‘closure law’ v[θ], expressing the surface velocity as a functional
of the surfactant concentration. As a result of our assumption Re� 1 this can be done
explicitly, since the relation between surfactant concentration and velocity is given by
the linear Stokes problem. We shall use a method based on Fourier-transforms for
the derivation of the closure laws rather than boundary-integral techniques (Jansons
& Lister 1988; Pozrikidis 1992) because the former can be more easily generalized to
the rotating and magnetic cases and because it can be easily inplemented numerically

using pseudospectral methods. Introducing the Fourier-transformed quantities θ̂, V̂ ,
and Ω̂ = ik × V̂ through

θ(x) =
1

4π2

∫
θ̂(k)eikxd2k, (2.14)

V (X ) =
1

4π2

∫
V̂ (k, z)eikxd2k, (2.15)

with the two-dimensional wavenumber k = kxex + kyey and k =
(
k2
x + k2

y

)1/2
we can

transform the Stokes problem (2.4), (2.5) and (2.11) into

ν(D2 − k2)Ω̂z + i(kxF̂y − kyF̂x) = 0, (2.16)

ν(D2 − k2)2V̂ z − (ikxDF̂x + ikyDF̂y + k2F̂z) = 0. (2.17)

The free-surface boundary conditions can be converted into

− µD2V̂ z = γk2θ̂, V̂ z = 0, DΩ̂z = 0, (2.18)

where D = d/dz. Equation (2.16) [(2.17)] follows from the Stokes equation by taking
the curl of (2.11) once [twice] and by evaluating the z-component. The first boundary
condition in (2.18) is obtained by adding the x-derivative of the first boundary
condition in (2.5) to the y-derivative of the second boundary condition in (2.5) and
making use of the incompressibility constraint. Finally, the third boundary condition
in (2.18) follows from the identity DΩz = −∂xΩx − ∂yΩy together with the relations
Ωx = (γ/µ)∂yθ and Ωy = −(γ/µ)∂xθ, the latter being a consequence of (2.5) and
Vz = 0. Once the type of force F [v] is specified, the vertical velocity and vertical
vorticity as obtained from (2.16)–(2.18) determine the entire flow field as

V̂ x =
ikx
k2

DV̂ z +
iky
k2
Ω̂z, (2.19)
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V̂ y =
iky
k2

DV̂ z −
ikx
k2
Ω̂z, (2.20)

(cf. Chandrasekhar 1961).
Since the Stokes problem (2.16)–(2.18) is linear, both DV̂ z and Ω̂z necessary to

evaluate the free surface velocity are linear functions of θ̂. If the force in (2.11)
is homogeneous and isotropic in the (x, y)-plane, we can, therefore, without loss of
generality, write equations (2.19) and (2.20) at the free surface as

v̂ = −ikγ‖(k)θ̂ + ik⊥γ⊥(k)θ̂ (2.21)

(with k⊥ = exky − eykx) where the closure functions γ‖ and γ⊥ are defined as

γ‖(k) = −DV̂ z(k, 0)

k2θ̂
, (2.22)

γ⊥(k) = +
Ω̂z(k, 0)

k2θ̂
. (2.23)

The physical meaning of the closure functions, which are the main focus of the
present work, becomes clear by considering the surface velocity induced by a single
Fourier mode θ = cos(kx). Using (2.21) the velocity field is easily determined as

v =
[
γ‖(k)ex + γ⊥(k)ey

]
k sin(kx). (2.24)

Thus, γ‖ and γ⊥ measure the longitudinal and transverse velocity component induced
by a unidirectional surfactant distribution. If γ‖ and γ⊥ were independent of the
wavenumber k, we would have

v = −γ‖∇θ − γ⊥∇⊥θ, (2.25)

where ∇⊥ = ez × ∇. Once the closure functions γ‖ and γ⊥ are determined by solving
the Stokes equations for a specific problem, equation (2.12) [or (2.13)] together with
(2.21) become a closed set. The rest of the paper is devoted to the determination of
closure laws for specific physical systems.

Before proceeding to the next section, however, a comment is in order on possible
deformations of the free surface. The present theory is developed for a non-deflecting
planar surface. At first glance, this assumption may seem to lack physical justification
because any fluid motion is accompanied by a deformation of the free surface. The
validity of such an assumption, discussed in depth by Scriven & Sternling (1964) and
Davis (1987) is a subtle question that has to be considered separately for each specific
problem. In the absence of gravity, the non-dimensional surface deflection h(x, y)/`
is of the order of the dynamic Bond number ∆σ/σ0 which is usually much smaller
than unity. However, there are instances such as pulmonary fluid dynamics (Grotberg
1994; Jensen & Grotberg 1992) and marine hydrodynamics (Sarpkaya 1996) in which
consideration of surface deflections is crucial.

3. The canonical problem: semi-infinite layer
3.1. Closure law

The simplest application of the basic ideas sketched in the previons section pertains
to a layer with infinite depth, i.e. z < 0, and no volume force (F = 0 in (2.11)).
Measuring space, time, wavenumber, and surfactant concentration in units of `,
µ`/∆σ, 1/`, and ∆θ where ` is the scale of variation of surfactant concentration, and
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introducing the non-dimensional quantities W (z) and H(z) via

V̂ z =
∆σ

µ
W, Ω̂z =

∆σ

µ`
H, (3.1)

the Stokes problem for the semi-infinite layer becomes

(D2 − k2)2W = 0, (3.2)

(D2 − k2)H = 0. (3.3)

The boundary conditions at the free surface z = 0 are

D2W = −k2θ̂, W = 0, DH = 0, (3.4)

while at infinity we require

W → 0, H → 0. (3.5)

Notice that there is no coupling between the vertical velocity W and the vertical
vorticity H . Therefore, the solution to the Stokes problem (3.2)–(3.5) can be easily
found as

W = −kz 1
2
θ̂ekz (3.6)

H = 0 (3.7)

Using the definitions (2.22) and (2.23) we can readily derive the closure law

γ‖ =
1

2k
, γ⊥ = 0, (3.8)

or, in other words,

v̂ = − ik

2k
θ̂. (3.9)

This relation, in conjunction with (2.12) for a soluble surfactant or with (2.13) for an
insoluble surfactant, forms a self-consistent two-dimensional system for the surfactant
concentration. Notice that its derivation from the three-dimensional non-diffusive
problem (2.1), (2.2), (2.4), (2.5) and (2.11) did not involve any approximation.

The closure law for the semi-infinite layer (3.9) can be transformed back to physical
space for both one-dimensional and two-dimensional surfactant distributions.

In the one-dimensional case v̂ = v̂ex and k = kex so that (3.9) becomes

v̂ = − 1
2
i sign(k)θ̂, (3.10)

with sign(k) = +1 for k > 0 and sign(k) = −1 for k < 0. Transformation of the result
back to physical space yields

v(x) = − i

4π

∫ ∞
−∞

sign(k)θ̂(k)eikxdk. (3.11)

With the help of the integral representations

sign(k) =
1

2πi

∫ ∞
−∞

eikx − e−ikx

x
dx (3.12)
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θ(x) v(x)

cos(kx) 1
2

sin(kx)

1

x2 + a2

x

2a(x2 + a2)
x

x2 + a2
− a

2(x2 + a2)

0 (−∞ < x < a)

log

∣∣∣a− x
x− b

∣∣∣ (a < b) 1
2
π (a < x < b)

0 (b < y < ∞)

Table 1. Examples of the relation between the surface velocity and surfactant concentration in the
one-dimensional case for a semi-infinite layer. The relations correspond to equation (3.14).

and

δ(x) =
1

2π

∫ ∞
−∞

eikxdk, (3.13)

we derive the desired relation

v(x) = − 1

2π

∫ ∞
−∞

θ(x′)

x′ − xdx′ (3.14)

expressing, in dimensionless form, the one-dimensional velocity field created by the
one-dimensional surfactant distribution θ(x). This relation can be written in terms of
the Hilbert transform H (Erdélyi 1954) as

v = − 1
2
Hθ. (3.15)

It is important to emphasize that the surface velocity is related to the surfactant
concentration by a non-local operator, or more precisely, by a singular integral
operator of homogeneity degree zero. The latter statement implies H(λx) = H(x)
which is the mathematical manifestation of the fact that the semi-infinite layer does
not posess any characteristic lengthscale.

Equation (3.15) furnishes a variety of exact kinematic relations between surfactant
concentration and surface velocity. For example, the concentration field θ(x) = δ(x),
which corresponds to an infinitely thin line of excess surfactant concentration, creates
the surface velocity

v(x) =
1

2πx
(3.16)

which decreases as the inverse distance from the line. For more illustrations of the
closure law the reader may consult the variety of Hilbert transforms tabulated by
Erdélyi (1954). Table 1 summarizes a few of them. As table 1 shows, the Hilbert
transform of a trigonometric function differs from its derivative only by the lack of
the wavenumber. Roughly speaking, the Hilbert transform is a smoother operator
than the derivative.

Physical intuition seems to suggest that the surface velocity in Marangoni convec-
tion is proportional to the gradient of surfactant concentration or surface temperature.
The fourth relation in table 1 provides a counterexample showing that the surface
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Figure 2. Illustration of the non-local relationship between (a) the surfactant concentration θ and
(b) the induced velocity v ∼ −H(θ). The first derivative of θ, a local operation, is shown in (c) for
comparison. Periodic boundary conditions are used.

velocity may vanish in regions of non-zero gradient of surfactant concentration. Ob-
serve that vx = 0 for x < a and x > b is not in contradiction with the boundary
conditions (2.5). The latter requires non-zero shear ∂zVx(x, 0) but does not impose
any constraints on the surface velocity itself. Example 4 from table 1 does not
however represent the generic case since the temperature field is singular. Figure 2
demonstrates another aspect of this non-local θ − v relation. The plots, including a
periodic function with Gaussian shape (figure 2a) together with its Hilbert transform
(figure 2b) and its first derivative (figure 2c), show that the velocity (proportional
to the Hilbert transform) may well be non-zero in regions where the gradient van-
ishes.
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In the two-dimensional case, the closure law (3.9) is most conveniently translated
into physical space by introducing a velocity potential φ via

v = −∇φ, (3.17)

and solving the resulting equation

∆1/2φ = 1
2
θ (3.18)

using the Green’s function of the operator ∆1/2. The latter is defined as a multiplication

in Fourier space with the modulus of the wavenumber, i.e. ∆̂1/2φ = kφ̂. The Green’s
function of this operator, defined by ∆1/2G = δ(x) is calculated by applying the
inverse Fourier transform to 1/k and by making use of the auxiliary relation

k̂
α

=
2αΓ 1

2
(n+ α)

π−n/2Γ
(
− 1

2
α
)x−(n+α) (3.19)

(Helgasson 1980) where n is the dimension of the space, and Γ the gamma function.
The result for α = −1 and n = 2

G(x) =
1

2π|x| (3.20)

provides the integral representation

φ(x) =
1

4π

∫
θ(x′)

|x− x′|d
2x′ (3.21)

for the velocity potential from which we derive the final result for the two-dimensional
surface velocity as

v(x) =
1

4π

∫
x− x′
|x− x′|3 θ(x′)d2x′ (3.22)

in terms of the surfactant concentration. Equation (3.22) immediately furnishes the
radial velocity caused by a point-like spot of surfactant θ(x) = δ(x− x0) as

vr =
1

4πr2
(3.23)

where r = |x − x0|. This relation implies that the flux 2πrvr through a circle around
x0 with radius r decays as (2r)−1.

3.2. Dynamics of singular surfactant distributions: the one-dimensional case

So far we have determined the kinematically possible velocity fields belonging to
a given surfactant concentration field. In this section we wish to elucidate the
dynamical consequences of the velocity for the redistribution of a soluble surfactant.
The simplest way of accomplishing this task is to consider the dynamics of one-
dimensional singular surfactant distributions in the form of N infinitely thin lines
located at the positions xn(t), to be determined from the governing equations. In
the theory of two-dimensional perfect fluids such an approach is called point-vortex
dynamics (Aref 1983). In our case, the singular surfactant distribution plays an
analogous role to that of point vortices in two-dimensional fluid dynamics.
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Consider N infinitely thin lines of surfactant concentration with strength θn located
at the positions xn (n = 1, . . . , N). Then

θ(x) =

N∑
n=1

θnδ(x− xn). (3.24)

Notice that a single line represents a weak stationary solution of (2.12) with (3.19)
inducing the velocity field

vn(x) =
1

2π

θn

x− xn
. (3.25)

As a result, the dynamical state of the system is uniquely characterized by the time-
dependent positions xn(t). To derive the evolution equation for these quantities we
observe that the nth line is advected by the velocity field created by the (N − 1) other
lines. Since the Stokes problem is linear, the velocity experienced by the nth line
is simply the superposition of the velocity fields created by all other lines. This is
mathematically expressed as

dxn
dt

=
1

2π

N∑
m=1,m6=n

θm

xn − xm
. (3.26)

This system represents a closed set of nonlinear ordinary differential equations for
the positions xn(t) of the lines with non-zero surfactant concentration. As in point-
vortex dynamics of ideal fluids, we have thereby reduced the continuous problem to
a finite-dimensional one.

While a systematic investigation of (3.26) is not undertaken here, we mention three
particular cases in which (3.26) can be solved in a straightforward manner. To this
end we first consider the evolution of two lines with positive surfactant concentration
θ1 = θ2 = 1 located at x1 and x2 (with x2 > x1) which is described by

dx1

dt
=

1

2π(x1 − x2)
,

dx2

dt
=

1

2π(x2 − x1)
. (3.27)

By introducing the centroid position ρ = x1 + x2 and the distance r = x2− x1 we can
reformulate these two equations as

dρ

dt
= 0,

dr

dt
=

1

πr
. (3.28)

Denoting the initial conditions by ρ = ρ0 and r = r0, one obtains the solutions

ρ = ρ0, r(t) = r0

(
1 +

2t

πr2
0

)1/2

. (3.29)

This solution describes two lines of positive surfactant concentration repelling each
other. For large times, the distance between them increases as t1/2. The second
example involves two negative lines with θ1 = θ2 = −1. Using the same procedure as
in the previous example, we readily obtain the solution

ρ = ρ0, r(t) = r0

(
1− 2t

πr2
0

)1/2

, (3.30)

which describes the approach of two lines with negative surfactant concentration and
their collapse after finite time τ = 1

2
πr2

0. Our final example involves two opposite lines,



A two-dimensional model for slow convection 295

i.e. θ1 = +1, θ2 = −1 for which we find

ρ(t) = ρ0 +
t

2πr0
, r = r0. (3.31)

This solution describes two opposite lines translating from the positive to the negative
concentration with constant speed and constant separation.

It is probable that the singular lines are prone to two-dimensional instabilities
transforming them into curved objects. The description of their dynamics, however,
would require more sophisticated methods, reminiscent of contour-dynamics in two-
dimensional turbulence.

3.3. Dynamics of singular surfactant distributions: the two-dimensional case

Next we turn to the formulation of the two-dimensional ‘point-vortex equations’
in which the singular structures are point-like spots of surfactant distribution with
strength θn. We assume θ to be of the form

θ(x) =

N∑
n=1

θnδ(x− xn). (3.32)

By (3.23) each spot creates the velocity

vn(x) =
θn

4π

x− xn
|x− xn|3

. (3.33)

Using the same arguments as before, we arrive at the two-dimensional analogue to
(3.26)

dxn
dt

=
1

4π

N∑
m=1,m6=n

θm
xn − xm
|xn − xm|3

, (3.34)

which represents again a nonlinear system of ordinary differential equations for the
positions xn = xn(t)ex + yn(t)ey of the singular spots.

It is straightforward to work out the generalization of the three previous examples
to the two-dimensional case. The two-dimensional analogue to (3.27) for positive
like-sign spots θ1 = θ2 = 1 is

dx1

dt
=

1

4π

x1 − x2

|x1 − x2|3
,

dx2

dt
=

1

4π

x2 − x1

|x2 − x1|3
. (3.35)

With the definitions ρ = x1 + x2, r = x2 − x1 and r = |r| we obtain

dρ

dt
= 0,

dr

dt
=

r

2πr3
, (3.36)

from which we derive the solution

ρ = ρ0, r(t) = r0

(
1 +

3t

2πr3
0

)1/3

. (3.37)

The distance between two positive spots increases as r ∼ t1/3, slower than in the
one-dimensional case. The solution for the negative spots is found as

ρ = ρ0, r(t) = r0

(
1− 3t

2πr3
0

)1/3

, (3.38)
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which again collapses after the finite time τ = 2
3
πr3

0. Finally, two opposite spots with

θ1 = +1, θ2 = −1 travel with constant speed v = (πr2
0)−1 as

ρ(t) = ρ0 −
r0t

πr3
0

, r = r0 (3.39)

In perfect fluids, point vortex models are a powerful tool for investigating nonlinear
vortex dynamics and approximating high-Reynolds-number two-dimensional turbu-
lent flows with finite-dimensional systems. It seems therefore appropriate to use (3.26)
and (3.34) for the investigation of elementary interaction processes in Marangoni
convection in high-Schmidt-number problems or in high-Prandtl-number fluids.

3.4. Dynamics of smooth surfactant distributions: the one-dimensional case

After having formulated the evolution equations for singular surfactant distributions,
we wish to provide some qualitative illustration of the generic dynamical evolution
of this system starting from smooth initial data. Since a comprehensive analytical
and numerical investigation of the dynamical evolution of specific cases is outside the
scope of the present paper, we shall use the one-dimensional and two-dimensional
dynamical evolution of a soluble surfactant as a prototype to provide an initial
qualitative understanding of the nonlinear phenomena encountered. A preliminary
report of this topic has been given by Thess, Spirn & Jüttner (1995).

In figure (3a) we plot the evolution of a soluble surfactant described by the
one-dimensional equation

∂tθ − (Hθ)∂xθ = 0, (3.40)

which is equivalent to (2.12) with (3.9). We have rescaled the time as t → 2t in
order to absorb the factor 1

2
from the closure law (3.9). The solution is obtained

using a pseudospectral method with 16 384 collocation points and periodic boundary
conditions. For periodic boundary conditions, the Hilbert transform is evaluated
in Fourier space by multiplying each Fourier component of θ with the sign of the
wavenumber. It should be noted that the pseudospectral formulation is well suited for
evaluating the non-local nonlinear term. The use of a finite-difference method with
local mesh refinement, which might seem more appropriate to the resolution of the
localized small-scale structure near x = π, does not offer any significant advantages
in terms of computational efficiency. The grid points saved by using a localized mesh
refinement, as opposed to the pseudospectral method, would be offset by a higher
computational cost, O(N2) (N is the number of grid points), needed to evaluate Hθ,
whereas the pseudospectral method requires only O[N log(N)] operations. Therefore,
the spectral formulation with equidistant grid points is approximately as efficient as
a finite-difference method with local grid refinement.

Figure 3(a) shows that the region of high surfactant concentration (low surface
tension) expands, while the region with low concentration in the vicinity of x = π
becomes compressed. After finite time t∗ ≈ 1.275, the first derivative (and all higher
derivatives) diverge and the smooth solution ceases to exist. The formation of a finite-
time singularity is common in many mathematical models of fluid-dynamical systems,
including perfect fluids (Pumir & Siggia 1992; Grauer & Sideris 1995) Hele-Shaw
flows (Goldstein, Pesci & Shelley 1995), geostrophic fronts (Constantin, Majda &
Tabak 1994a, b) and free-surface flows (Eggers 1993; Kuznetsov, Spector & Zakharov
1994). The existence of a finite-time singularity, which can be proven rigorously for
the complex version of (3.40) (Thess, Spirn & Jüttner 1995), is a signature of the
strong tendency of the system to transfer energy towards smaller scales.
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Figure 3. Finite-time singularity in surface-tension-driven flow. (a) Temporal evolution of surfactant
concentration obtained from numerical solution of equation (3.40). Initial condition is θ = cos(x),
output is every ∆t = 0.4, successive curves are shifted. (b, c) Surface velocity and first spatial
derivative of surfactant concentration shortly before the singularity time t∗ = 1.275.

The behaviour of the surface velocity v ∼ −Hθ and of the first derivative ∂xθ
close to singularity time is plotted in figures 3(b) and 3(c), respectively. Although θ
forms a cusp near x = π, the spatial structure of v(x) remains remarkably smooth,
which is a consequence of the non-local relation between θ and v. By contrast, ∂xθ
tends to develop sharp spikes whose height and width we found to scale with time, as
respectively, max |∂xθ| ∼ τ−3 and δ ∼ τ2, where τ = t∗ − t. This behaviour should be
contrasted with max |∂xθ| ∼ τ−1 and δ ∼ τ for the Burgers equation ∂tθ − (∂xθ)2 = 0.
The qualitative nature of solutions to the Burgers equations is similar to that plotted
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in figure (3a). The singularity of (3.40) is thus weaker than the singularity of the
Burgers equation because max |∂xθ| grows more quickly for the Burgers equation and
because the speed of compression dδ/dt is constant for the Burgers equation while
the speed of compression decreases for (3.40) as dδ/dt ∼ −τ. The weakness of the
singularity is due to the smoothness of the velocity field (figure 3b) compared to
the function ∂xθ (figure 3c). Numerical simulations with various initial conditions,
including random initial conditions, have shown that close to the singularity, located
at x∗ and t∗, the surfactant distribution is of the self-similar form

θ = θ∗ + τf

(
ξ

τ2

)
, (3.41)

where τ = t∗ − t, ξ = x∗ − x, and θ∗ denotes the value of the surfactant concentration
at the bottom of the cusp. The function f(η) with η = ξ/τ2 is found to have a
quadratic minimum at η = 0 and scales as f ∼ η1/2 for large arguments. However, the
numerical values of this function appear not to be universal. This can be understood
by observing that the equation f′(Hf−2η)+f = 0, obtained by inserting the similarity
ansatz into (3.40) does not possess a global solution since Hf is not defined for a
non-integrable function like f ∼ |η|1/2.

Next, we shall consider the spatial structure of the flow in the interior of the fluid.
Figure 4 shows the stream-function and the tangential vorticity in the (x, z)-plane for
the initial condition and shortly before the singularity. While the structure of the
stream function, an integral quantity of the flow, remains virtually unchanged, apart
from a slight shift of the maximum towards x = π, the vorticity becomes strongly
redistributed by the flow. The vorticity maxima approach each other and merge at
the singularity time. The maxima of the vorticity at the free surface coincide with the
maxima of the function ∂xθ plotted in figure 3(c). Indeed, it can be shown using the
definition ω̂ = ikV̂ z − DV̂ x, the two-dimensional version of the continuity equation

ikV̂ x = −DV̂ z and the Stokes solution V̂ z = ( 1
2
θ̂kz) exp(kz) that ω̂(z = 0) = ikθ̂ and

thus the surface vorticity,

ω(x, 0) = ∂xθ(x), (3.42)

is identical to the derivative of the surfactant concentration.
Before proceeding to the two-dimensional case, we note parenthetically that the

behaviour of an insoluble surfactant governed by

∂tθ − ∂x[(Hθ)θ] = 0, (3.43)

is quite different from the behaviour of solutions to (3.40) since the mass
∫
θdx is

conserved in contrast to (3.40). For example, it can be shown (Thess 1996) that the
width ` of a spreading insoluble surfactant distribution increases as ` ∼ t1/2, while
the corresponding soluble surfactant spreads as ` ∼ t. In general, the evolution of an
insoluble surfactant proceeds slower since the conservation of mass inhibits surface
renewal.

3.5. Dynamics of smooth surfactant distributions: the two-dimensional case

The two-dimensional evolution of a soluble surfactant, after rescaling of time by
t→ 2t, is governed by the equation

∂tθ − (∇∆−1/2θ) · ∇θ = 0. (3.44)

A similar equation, namely

∂tθ − (∇⊥∆−1/2θ) · ∇θ = 0, (3.45)



A two-dimensional model for slow convection 299

(a)

(b)

(c)

(d )

w(x, z)

w(x, z)

x(x, z)

x(x, z)

t=0 t=0

t=1.2t=1.2

Figure 4. (a, b) Stream function and (c, d) tangential vorticity corresponding to the evolution
shown in figure 3 plotted in the (x, z)-plane. (a, c) flow fields of the initial condition, (b, d) flow
fields shortly before the singularity time t∗ = 1.275. The flows are periodic in x with periodicity
length 2π and extend from z = 0 to z → −∞. ψ and ω are related to the velocity field via
Vx = ∂zψ, Vy = −∂xψ, ω = ∂xVz − ∂zVx.

with θ the potential temperature and ∇⊥ = ex∂y−ey∂x has been studied by Constantin
et al. (1994a, b) as a model for geostrophic front formation. Moreover, it is worth
mentioning that the two-dimensional Euler equation for the vorticity ω can be
rewritten in the form

∂tω − (∇⊥∆−1ω) · ∇ω = 0. (3.46)

The main difference between (3.45) and (3.46) on the one hand, and our equation
(3.44) on the other hand, is that the velocity v is perpendicular to the gradient of the
scalar in the former cases, while it is parallel to the gradient in the latter case. As
a result, the dynamics of our two-dimensional equation is locally very similar to the
one-dimensional dynamics discussed in the previous section. Our two-dimensional
simulations have shown that the velocity field induced by the non-uniform surfactant
distribution leads to a steepening of the gradient |∇θ| and to a finite-time blow-up with
the same characteristics as found in the one-dimensional case. Strictly speaking, the
solution to (3.44) ceases to exist once a singularity has occured at the ‘most dangerous’
point in the (x, y)-plane. For some initial conditions this singularity occurs almost
immediately. In order to study the behaviour of near-singular structures for times
beyond the singularity time, we have performed a simulation of (3.44) with a small
phenomenological dissipative term D∇2θ added to the right-hand side that prevents
the generation of arbitrarily small structures. Starting from the initial condition
θ = cos(2x) cos(y) + sin(x) sin(y) + cos(2x) sin(3y) that has been used by Constantin
et al. (1994b) for the investigation of (3.45) we observe a vigorous growth of the local
maxima of θ, while the regions of minima get rapidly compressed. In the first stage of
evolution extending approximately to t ≈ 0.7, the growth of |∇θ| occurs most rapidly



300 A. Thess, D. Spirn and B. Jüttner
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t = 0.8 t =1.2

Figure 5. Formation of strong fronts in two-dimensional Marangoni convection. Surfactant
concentration evolving from the initial condition θ = cos(2x) cos(y) + sin(x) sin(y) + cos(2x) sin(3y)
obtained from a numerical solution of equation (3.44) with doubly periodic boundary conditions.
Spatial resolution is 512× 512 collocation points.

in the vicinity of the saddle points of the initial condition and leads to the formation
of localized near-cusps. After this time the diffusive regularization prevents further
steepening of |∇θ|. In the second stage, the near-singular structures begin to spread
in the transverse direction, forming straight singular fronts, which are clearly seen in
the plots of figure 5 for t = 0.8 and t = 1.2. The spreading process comes to an end
once the singular fronts have merged to form knots. We observe that the curvature
of the function θ(x, y), which is proportional to ∇2θ, forms strong maxima, almost
delta functions, over the knots where in most cases three singular fronts merge. After
the establishment of these strong spikes, the surfactant concentration homogenizes in
a third stage, characterized by large timescales of the order D−1.

The behaviour shown in figure 5 is in remarkably good agreement with full
three-dimensional numerical simulations of the (thermal) Marangoni problem for
high Marangoni numbers performed by Thess & Orszag (1995). This demonstrates
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that the self-consistent model with the phenomenological dissipative term reproduces
correctly the behaviour of the full three-dimensional problem and provides a rational
framework to study strongly nonlinear Marangoni convection at greatly reduced
computational expense.

It should be emphasized that the existence of a finite-time singularity in the non-
diffusive model is not a deficiency of the theory but rather a signature of the strong
energy transfer in wavenumber space. There are a few works (Cowley & Davis
1983; Zebib et al. 1985) that have demonstrated the possibility of sharp temperature
gradients in the vicinity of walls in laterally heated Marangoni convection using
boundary-layer analysis and numerical simulation. Our present theory shows that the
existence of such structures, which become singular in the limit Ma → ∞, does not
necessarily require the presence of walls but represents an intrinsic property of the
nonlinear advection process.

4. The effect of finite depth
An obvious generalization of the canonical problem follows from considering a

layer with finite depth d. In the following two sections we shall derive the closure laws
for a system with either no-slip boundary conditions or free-slip boundary conditions
at the bottom. For convenience we shift the coordinate system such that the free
surface is at z = d, and the bottom is at z = 0. Since the problem now has a
natural lengthscale d, we use d, µd/∆σ, and ∆θ as the scales for space, time and

surfactant concentration. The Stokes problem for the functions W (z) = µV̂ z/∆σ and

H(z) = µdΩ̂z/∆σ and the boundary conditions at the free surface z = 1 are the same
as before, namely

(D2 − k2)2W = 0, (4.1)

(D2 − k2)H = 0, (4.2)

and

D2W (1) = −k2θ̂, W (1) = 0, DH(1) = 0. (4.3)

4.1. Solution for the case when the bottom is a rigid boundary

The no-slip boundary condition V = 0 at z = 0 can be translated into the conditions

W (0) = 0, DW (0) = 0, H(0) = 0. (4.4)

by using the continuity equation and the definition of the vertical vorticity (see also
Chandasekhar 1961). As in §3, the equation for H decouples from the equation for
W and since the boundary conditions for H are homogeneous, the only solution of
(4.2), with H(0) = DH(1) = 0 is the trivial one H = 0. The fourth-order equation
(4.1) for W has the general solution

W = c1e
kz + c2e

−kz + c3ze
kz + c4ze

−kz. (4.5)

The four unknown coefficients are uniquely determined by the four boundary condi-
tions. A straightforward calculation yields the result

W = θ̂
k2 sinh(kz)− k3z cosh(kz) + [k coth(k)− 1]k2z sinh(kz)

k2 sinh(k) + k3 cosh(k) + [1− k cosh(k)]2k cosh(k) + k2 sinh(k)
, (4.6)
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for the vertical velocity from which, using the definitions (2.22) and (2.23), we deduce
the closure law

γ‖(k) =
sinh2(k)− k2

k sinh(2k)− 2k2
, γ⊥(k) = 0. (4.7)

Here, and in the following sections, we shall omit the subscript of γ‖ if γ⊥ is zero.
The function γ(k) is plotted in figure 6(a) together with that of the infinitely deep
fluid, derived in the previous section. As expected, both closure laws become identical
in the limit of large wavenumbers k = 2πd/`, since surfactant concentrations with
periodicity length ` much smaller than d do not ‘feel’ the finite depth of the layer.

An interesting phenomenon occurs in the limit of small wavenumbers where γ → 1
4
,

as can be verified by performing a Taylor expansion of (4.7) around k = 0. In this

case v̂ = −ikθ̂/4, which in physical space implies v = − 1
4
∇θ and leads to the evolution

equation

∂tθ − 1
4
(∇θ)2 = 0 (4.8)

for a soluble surfactant. After rescaling θ → −4θ this equation transforms into the
well known two-dimensional Burgers equation

∂tθ + (∇θ)2 = 0. (4.9)

Thus, surface-tension driven flows with a characteristic lengthscale much larger than
the depth of the layer are governed by the Burgers equation, which arises in other
nonlinear extended systems as diverse as flame fronts (Sivashinsky 1983), the large-
scale structure of the Universe (Vergassola et al. 1994), and dendritic growth (Kardar,
Parisi & Zhang 1986).

4.2. Solution for the case when the bottom is a free boundary

For free-slip conditions Ωx = Ωy = Vz = 0, the procedure of §4.1 can be repeated
with the boundary conditions (4.4) replaced by

W (0) = 0, D2W (0) = 0, DH(0) = 0. (4.10)

Again, the vertical vorticity vanishes for the same reasons as before, while the solution
for W can be readily obtained as

W (z) = θ̂
kz sinh(k) cosh(kz)− k cosh(k) sinh(kz)

2 sinh2(k)
. (4.11)

With this step done, we can evaluate the closure law as

γ‖(k) =
sinh(2k)− 2k

2k(cosh(2k)− 1)
, γ⊥(k) = 0, (4.12)

which is plotted in figure 6(b). The behaviour is qualitatively similar to the no-slip
case. In the short-wave limit k → ∞, the closure law becomes identical to that of
the unbounded layer, while in the long-wave limit k → 0, we obtain γ → 1

3
. The

larger value of γ in comparison with the no-slip case is due to the fact that a free-slip
bottom provides less resistance to fluid motion than a no-slip bottom.

With the closure laws (4.7) and (4.12) the surface velocity can be formally repre-
sented as

v(x) = −∇
∫
G(x′ − x)θ(x′)d2x′, (4.13)
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Figure 6. Closure law of a layer with finite depth with (a) no-slip condition (cf. (4.7)) and (b) with
free-slip condition (cf. (4.12)) at the bottom. The wavenumber is made dimensionless with the layer
depth d.

where the Green’s function is

G(x) =
1

4π

∫
γ(k)eikxd2k. (4.14)

However, we did not succeed in deriving an explicit analytic expression of the Green’s
function for either of the closure laws (4.7) or (4.12).

5. The effect of rotation
As a next step we consider a layer with infinite depth rotating with constant angular

velocity Ω around the vertical axis. The rotation produces a Coriolis force

F = −2Ωez × V , (5.1)

which has to be taken into account when solving the Stokes problem (2.16)–(2.18).
Two basic features of rotating Marangoni convection, however, can be understood
without solving the Stokes problem. First, the presence of the Coriolis force entails
a coupling between the vertical velocity and the vertical vorticity. As a result, radial
surface flow is always accompanied by an azimuthal velocity component, rendering
γ⊥ non-zero in contrast to the previous cases. Secondly, rotation induces a natural
lengthscale into the problem, namely the thickness

δE =
( ν

2Ω

)1/2

(5.2)

of the Ekman boundary layer in the vicinity of the free surface. The Ekman layer
represents the domain in rotating fluids where viscous forces and Coriolis forces are
of comparable magnitude (Greenspan 1990). This lengthscale plays a similar role as
the depth d in §4. Thus, in deriving the Stokes problem for the rotating system, it
is natural to use the quantities δE , µδE/∆σ, and ∆θ as the scales for space, time and
surfactant concentration. Inserting the Coriolis force (5.1) into (2.16) and (2.17) and
using again W (z) = µV̂ z/∆σ and H(z) = µδEΩ̂z/∆σ we obtain the Stokes equations
in the form

(D2 − k2)2W −DH = 0, (5.3)

(D2 − k2)H + DW = 0. (5.4)
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The boundary conditions at the free surface are as in the previous section

D2W (0) = −k2θ̂, W (0) = 0, DH(0) = 0, (5.5)

as is the boundary condition W → 0 and H → 0 for z → −∞.

5.1. Solution for arbitrary wavenumber

First, we compute W (z) by eliminating H . To this end we multiply (5.3) by (D2− k2),
(5.4) with D, and add them in order to obtain

(D2 − k2)3W + D2W = 0 (5.6)

as a single equation for W . The third boundary condition in (5.5) can be transformed
into

(D2 − k2)2W (0) = 0. (5.7)

The general solution to (5.6) vanishing at z → −∞ is

W = c1e
q1z + c2e

q2z + c3e
q3z, (5.8)

where the qi are the roots of the cubic equation

(q2 − k2)3 + q2 = 0 (5.9)

with positive real parts. The unknown coefficients ci are uniquely determined by the
first two boundary conditions in (5.5) and by (5.9). Once the ci are determined, H(z)
can be computed as a solution of

(D2 − k2)H = −c1q1e
q1z − c2q2e

q2z − c3q3e
q3z, (5.10)

which can be written as

H(z) = −c1q1e
q1z

q2
1 − k2

− c2q2e
q2z

q2
2 − k2

− c3q3e
q3z

q2
3 − k2

+ c4e
kz. (5.11)

The coefficient c4 is obtained by enforcing the boundary condition (5.5).
A lengthy but straightforward computation of the coefficients c1 to c4 leads, on

using the definitions (2.22) and (2.23), to the following closure laws for the rotating
layer

γ‖(k) =
(q2

1 − k2)2(q2 − q3) + (q2
2 − k2)2(q3 − q1) + (q2

3 − k2)2(q1 − q2)

q4
1(q2

2 − q2
3) + q4

2(q2
3 − q2

1) + q4
3(q2

1 − q2
2)

, (5.12)

γ⊥(k) =

(q2
3 − k2)2 − (q2

2 − k2)2

k(1 + kq−1
1 )

+
(q2

1 − k2)2 − (q2
3 − k2)2

k(1 + kq−1
2 )

+
(q2

2 − k2)2 − (q2
1 − k2)2

k(1 + kq−1
3 )

q4
1(q2

2 − q2
3) + q4

2(q2
3 − q2

1) + q4
3(q2

1 − q2
2)

,

(5.13)

plotted in figure 7. We have verified by using symbolic computation, that both γ‖ and
γ⊥ are real functions even though the roots qi are in general complex. The reader
is urged not to be intimidated by the apparent complexity of these equations, the
detailed structure of which is not essential to the understanding of their physical
content.

Figure 7(a) shows that the behaviour of the parallel velocity component in rotating
convection strongly resembles that of convection in a non-rotating finite sheet plotted
in figure 6. In the short-wave limit k → ∞, when the lengthscale of surfactant
concentration variations is much smaller than the thickness of the Ekman layer, γ‖
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Figure 7. Closure law for (a) the longitudinal (cf. (5.12)) and (b) for the transverse (cf. (5.13))
velocity components in a rotating layer with infinite depth. The wavenumber is made dimensionless
with the thickness of the Ekman boundary layer δE = (ν/2Ω)1/2.

k γ‖(k) γ⊥(k)

0 7.071× 10−1 −7.071× 10−1

0.2 7.130× 10−1 −6.751× 10−1

0.4 7.121× 10−1 −5.497× 10−1

0.6 6.598× 10−1 −3.539× 10−1

0.8 5.675× 10−1 −2.005× 10−1

1.0 4.787× 10−1 −1.145× 10−1

2.0 2.492× 10−1 −1.553× 10−2

3.0 1.665× 10−1 −4.624× 10−3

4.0 1.249× 10−1 −1.952× 10−3

Table 2. Numerical values of the closure law for surface-tension driven convection in a rotating
layer with infinite depth (equations (5.12) and (5.13))

becomes identical to that of the unbounded layer. The transverse velocity component
decays much faster for large k than the longitudinal velocity. This will be explained
in connection with the asymptotic theory for k → ∞, to be developed below. From
the negative sign of γ⊥ we can conclude that for a layer rotating anticlockwise, the
trajectory of a particle flowing in the direction opposite to the gradient ∇θ is deflected
to the right, as is to be expected of flows under the influence of a Coriolis force.

In the short-wave limit k → 0, which corresponds to structures much larger than
the Ekman-layer thickness, both functions tend to constant values γ‖ = 1/

√
2 ≈ 0.707

and γ⊥ = −1/
√

2. Consequently, in a fluid rotating in the positive sense, the velocity of
large-scale perturbations has turned 45◦ to the right of the velocity in a non-rotating
layer. This phenomenon is reminiscent of the behaviour of the ordinary Ekman layer
in geophysical flows (see e.g. Pedlosky 1987). Selected numerical values of γ‖ and γ⊥
are listed in table 2. In the next sections we analyse the limiting cases of large and
small wavenumbers.

5.2. Asymptotic solution for k � 1

In order to solve the Stokes problem (5.3)–(5.5) for k � 1 we introduce the small
parameter ε = k−1 and the new variables ζ = kz, Dζ = d/dζ, S = k2W . In terms of
the new variables the Stokes problem transforms into

(D2
ζ − 1)2S − εDζH = 0, (5.14)
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(D2
ζ − 1)H + ε3DζS = 0, (5.15)

with the boundary conditions

D2
ζS(0) = 1, S(0) = 0, DζH(0) = 0. (5.16)

We seek the asymptotic solutions for S and H as a power series in the form

S(ζ) = ε0S0 + ε1S1 + ε2S2 + ε3S3 + O(ε4), (5.17)

H(ζ) = ε0H0 + ε1H1 + ε2H2 + ε3H3 + O(ε4). (5.18)

Inserting this ansatz into (5.14)–(5.16) and equating the coefficients for each power of
ε, we obtain a chain of equations determining the functions Si and Hi. To zero order
in ε we have the equations and boundary conditions

(D2
ζ − 1)2S0 = 0, (5.19)

(D2
ζ − 1)H0 = 0, (5.20)

S0(0) = D2
ζS0(0)− 1 = DζH0(0) = 0. (5.21)

which are identical to those for the unbounded layer with k = 1 and have the solutions

S0 = 1
2
ζeζ , H0 = 0. (5.22)

The first- and second-order equations and boundary conditions are both of the form

(D2
ζ − 1)2Sn −DζHn = 0, (5.23)

(D2
ζ − 1)Hn = 0, (5.24)

Sn(0) = D2
ζSn(0) = DζHn(0) = 0, (5.25)

where n = 1 or n = 2. Since both the equations and the boundary conditions are
homogeneous and linear, the only solution is the trivial one Sn = Hn = 0 for n = 1, 2.
The third-order problem reads

(D2
ζ − 1)2S3 −DζH2 = 0, (5.26)

(D2
ζ − 1)H3 + DζS0 = 0, (5.27)

S3(0) = D2
ζS3(0) = DζH3(0) = 0. (5.28)

The solution

S3 = 0, H3 = 1
8
(1− ζ − ζ2)eζ , (5.29)

together with (5.22) provides the desired analytic expressions

γ‖(k) =
1

2k
, γ⊥(k) = − 1

8k3
, (5.30)

for the leading-order asymptotic terms of the closure law for the rotating layer. The
curves are plotted as dashed lines in figure 7. It follows from (5.30) that the ratio
between the transverse and longitudinal velocity components decreases with increasing
wavenumber as v⊥/v‖ = γ⊥/γ‖ ∼ k−2 ∼ (`2/δ2

E) ∼ `2Ω/ν where ` denotes the spatial
periodicity length of θ. A simple physical interpretation of this phenomenon can be
given by estimating the magnitude of the perpendicular velocity component v⊥ from
the longitudinal velocity v‖ using the balance between viscous forces and the Coriolis
force, expressed by the Stokes equation (2.11). This equation implies

ν∇2v⊥ ∼ Ωv‖. (5.31)
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Since ` � δE , the Laplacian can be estimated as ∇2 ∼ `−2, and we obtain v⊥ ∼
(`2Ω/ν)v‖ which is exactly the desired relation.

5.3. Asymptotic solution for k � 1

In the limit k � 1, the structures are much larger than the depth of the Ekman layer.
Using (5.6) as a starting point, we obtain

(D6 + D2)W = 0, (5.32)

with the boundary conditions (5.5) as the zero-order equation for W . Of the six zeros
of the characteristic equation λ6 + λ2 = 0, only two, namely λ1/2 = (1 ± i)/

√
2, have

a positive real part. Therefore the solution of (5.31), which decays at infinity, must
have the form

W = c1e
λ1z + c2e

λ2z. (5.33)

To leading order in k2 the first two boundary conditions in (5.5) are satisfied if

c1 = −c2, while (5.7) requires i(c1 − c2) = −k2θ̂. As a result, the solution for W takes
the form

W = −k2θ̂ exp

(
z√
2

)
sin

(
z√
2

)
. (5.34)

From the knowledge of W the function H is readily obtained by solving the leading-
order equation

D2H + DW = 0 (5.35)

with the third boundary condition (5.5). The result

H =
1√
2
k2θ̂ exp

(
z√
2

)[
sin

(
z√
2

)
− cos

(
z√
2

)]
(5.36)

together with (5.34) immediately furnishes the asymptotic expressions

γ‖(k) =
1√
2
, γ⊥(k) = − 1√

2
, (5.37)

for the closure law of a rotating layer in the long-wave limit.
The physical meaning of these relations can be understood using the same argu-

ments as in the previous section with the estimate for the action of the Laplacian
replaced by ∇2 ∼ δ−2

E , which is the consequence of the fact that the Ekman-layer
thickness is now the dominant scale of the problem. The estimate v⊥ ∼ (δ2

EΩ/ν)v‖ ∼ v‖
is consistent with (5.37).

Linear Marangoni instability in rotating fluids has been studied by Namikawa,
Takashima & Matsushita (1970). The present formulation, in particular (2.12) with
(5.12) and (5.13), provides the strongly nonlinear counterpart to the linear stability
approach.

6. The effect of a magnetic field
Consider a layer of electrically conducting fluid subjected to a homogeneous

vertical magnetic field B0ez . The interaction between the Marangoni convection and
the magnetic field leads to the induction of electric currents which, by virtue of Joule
dissipation, reinforce the dissipative action of ordinary viscosity. Magnetic control of
free-surface flows is important in various materials’ processing technologies.
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The action of the magnetic field upon the fluid is described by the Lorentz force
per unit mass

F =
1

ρµ0

(∇̃× B)× B (6.1)

which has to be inserted into the Stokes equation (2.18) and (2.19). In general, the
magnetic field must be determined by solving the equations

∂tB + (V · ∇̃)B = (B · ∇̃)V +
1

σelµ0

∇̃2B, (6.2)

∇̃ · B = 0. (6.3)

The derivation of these equations from Maxwell’s equations and Ohm’s law can be
found in standard textbooks on magnetohydrodynamics (e.g. Moreau 1990). Here µ0

and σel denote the magnetic permeability and the electrical conductivity of the fluid,
respectively. We are interested in a situation where the magnetic field perturbation
induced by the fluid motion is much weaker than the applied magnetic field. This
condition is fulfilled if the magnetic Reynolds number Rm = µ0σel`v with ` a
characteristic lengthscale and v a characteristic velocity of the motion is very small,
as is the case for most laboratory experiments and industrial applications. The
assumption Rm� 1 permits us to write the magnetic field as

B = B0ez + B′ (6.4)

and to linearize the magnetic field equation with respect to B′. Moreover, for liquid
metals the magnetic Prandtl number Pm = νσelµ0 is very small, expressing the fact
that the relaxation of the magnetic field occurs much faster than viscous relaxation.
Therefore, we can neglect the time-derivative of the magnetic field too. We are left
with the equation

∇̃2B′ + B0µ0σel∂zV = 0 (6.5)

for the magnetic field perturbation. Neglecting quadratic terms in the magnetic field
perturbation the Lorentz force can be expressed as

F =
B0

ρµ0

(
∂zB

′ − ∇̃B′z
)
. (6.6)

Based on relations (6.5) and (6.6) and the Stokes equation (2.16) and (2.17) we can
derive the following equations for the vertical velocity, vertical vorticity, and vertical
component of magnetic field perturbation in Fourier space

ν(D2 − k2)2V̂ z −
B0

ρµ0

D(D2 − k2)B̂′z = 0, (6.7)

ν(D2 − k2)Ω̂z = 0, (6.8)

1

σelµ0

(D2 − k2)B̂′z + B0DV̂ z = 0. (6.9)

The magnetic field can be eliminated from the stability problem by inserting (6.9)
into (6.7) which leads to

(D2 − k2)2V̂ z +

(
B2

0σel

ρν

)
∂2
z V̂ z = 0. (6.10)
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Flows of electrically conducting fluids in the presence of a magnetic field are charac-
terized by the existence of a Hartmann boundary layer with thickness

δH =
1

B0

(
µ

σel

)1/2

, (6.11)

which provides a natural lengthscale for the problem at hand. Within the Hartmann
layer the viscous forces and the electromagnetic forces are of the same order of
magnitude. Based on this, we use the quantities δH , µδH/∆σ, and ∆θ as the scales
for space, time and surfactant concentration. Introducing as in previous sections the
functions W (z) = µV̂ z/∆σ and H(z) = µδHΩ̂z/∆σ we obtain the Stokes equations in
the form

(D2 − k2)2W −D2W = 0, (6.12)

(D2 − k2)H = 0. (6.13)

The boundary conditions at the free surface are

D2W (0) = −k2θ̂, W (0) = 0, DH(0) = 0. (6.14)

The reader interested in the details of the derivation of the magnetic Stokes problem
is referred to Chandrasekhar’s (1961) classical textbook. With the positive roots

q1/2 = 1
2

((
1 + 4k2

)1/2 ± 1
)

(6.15)

of the characteristic equation (q2− k2)2− q2 = 0 we can express the solution of (6.12)
as

W = c1e
q1z + c2e

q2z. (6.16)

Enforcing the boundary conditions gives the result

W = − k2θ̂

(1 + 4k2)1/2
(eq1z − eq2z) (6.17)

and the closure law

γ‖(k) =
1

(1 + 4k2)1/2
, γ⊥(k) = 0 (6.18)

which is plotted in figure 8.
It becomes evident by inspection of figure 8 that the behaviour of convection in

an infinite layer in the presence of a magnetic field is similar to convection in a layer
with finite depth where the Hartmann boundary-layer thickness plays the role of the
depth. For perturbations with periodicity length much smaller than δH the closure
law is identical to that of the unbounded layer. For large-scale perturbations the
role of the Hartmann boundary layer consists in confining the flow to the immediate
vicinity of the free surface. Thus in the limit k → 0 we have γ → 1

2
which implies that

large-scale perturbations are governed by the Burgers equation.

7. Summary and conclusions
We have investigated surface tension driven flows set up by a scalar with zero

diffusivity. The main result of the work consists of a systematic derivation of closure
laws, relating the surface velocity field to the distribution of the surface tension
at the free surface. These closure laws are summarized in table 3 together with
their asymptotic behaviour for large and small wavenumber. In conjunction with
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Figure 8. Closure law of a layer with infinite depth subject to a vertical magnetic field (cf.
(6.18)). The wavenumber is made dimensionless with the thickness of the Hartmann boundary layer
δH = (µ/σel)

1/2/B.

System Exact relation k � 1 k � 1

Semi-infinite layer γ‖ =
1

2k
γ‖ =

1

2k
γ‖ =

1

2k

Finite layer with rigid lower boundary γ‖ =
sinh2(k)− k2

k sinh(2k)− 2k2
γ‖ =

1

4
γ‖ =

1

2k

Finite layer with free lower boundary γ‖ =
sinh2(k)− 2k

2k cosh(2k)− 2k
γ‖ =

1

3
γ‖ =

1

2k

Rotating semi-infinite layer γ‖: equation (5.12) γ‖ =
1√
2

γ‖ =
1

2k

γ⊥: equation (5.13) γ⊥ = − 1√
2

γ‖ = − 1

8k3

Semi-infinite layer with vertical magnetic field γ‖ =
1

(1 + 4k2)1/2
γ‖ = 1 γ‖ =

1

2k

Table 3. Summary of closure laws obtained in the present work. γ⊥ = 0 in all cases
where only γ‖ is given.

equations (2.12) and (2.13) the closure laws lead to self-consistent two-dimensional
models of Marangoni convection that are not only useful in analysing nonlinear
self-organization and pattern formation but are also of mathematical interest in
their own right. The present theory is derived for zero Reynolds number, implying
that the application of the theory to real problems is bounded from above by the
requirement that the inertia does not significantly affect the dynamics of the flow.
It would be interesting to generalize the model to the finite-Reynolds-number case
using perturbation theory.

The examples treated in the present work have not been chosen at random. Apart
from the infinitely deep layer, they are all characterized by a single lengthscale. Using
this length as a characteristic scale, the closure laws and the evolution equations
can be written in a universal non-dimensional form that is free of any parameters
such as Ekman number or Hartmann number. Any further generalization of the
models, such as rotating convection in a finite layer, convection in a two-layer
system, convection under the combined influence of rotation and magnetic field or
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convection driven by more than one scalar field would require the introduction of non-
dimensional parameters and render the closure laws more complicated. Apart from
this technical aspect, however, such generalizations are deemed useful for improving
our understanding of Marangoni convection. Moreover, it would be interesting to
use the equations as a model for chemical Marangoni convection, thereby extending
the linear and weakly nonlinear stability studies of Rabinovich, Vyazmin & Buyevich
(1993, 1995) into the strongly nonlinear regime. This could be accomplished by
writing down equations analogous to (2.12) for the concentration of each species and
adding to the right-hand side appropriate terms accounting for the reaction kinetics.

A similar approach can be taken in order to model the general surfactant dynamics,
characterized by the presence of both bulk concentration C (with the value c at the
free surface) and excess surface concentration cs as already mentioned in §2. Under
the assumption that the bulk-diffusivity is zero, the system is governed by the two-
dimensional model

∂tc+ (v[cs] · ∇)c = 0, (7.1)

∂tcs + ∇ · (v[cs]cs) = Ds∇2cs + J(cs, c). (7.2)

Once the transport relation J is specified, this set of equations becomes a self-
consistent model. The lack of a vertical diffusive flux of surfactant can be overcome
by adding a phenomenological source term to (7.1).

Our results for the rotating case may find applications in geophysical fluid dynamics
for phenomenological modelling of thermohaline convection (Whitehead 1995). Since
the thickness of the thermocline is usually much less than the depth of the ocean,
it may be, to a first approximation, regarded as a thin film governed by (2.13) with
closure (2.12) and (2.13).

The present theory can be generalized in a straightforward manner to curved
interfaces. This is important for application in chemical engineering, where spherical
bubbles or drops are often encountered. From the theoretical perspective it would
be desirable to perform a detailed investigation of the mathematical structure of
the finite-time singularities, at which we have provided only a first glimpse. Finally,
by adding a phenomenological random-force-term describing ‘energy injection’ the
insoluble surfactant equation

∂tθ + ∇(v · θ) = D∇2θ + f(x, t), (7.3)

could be used as a simplified model for interfacial turbulence in high-Schmidt-number
problems or high-Prandtl-number fluids.

Note added in proof. P. Colinet (1996, personal communication) uses an instability
term instead of random force in order to drive the system.

We are grateful to Th. Boeck, A. Golovin, K. Nitschke, R. Picard, L. Pismen
and M. Romerio for useful comments and discussions. An anonymous referee is
acknowledged for his constructive criticism. This work has been partially supported
by the Deutsche Forschungsgemeinschaft.
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